enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. [1] In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem.

  3. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    In the unbalanced assignment problem, the larger part of the bipartite graph has n vertices and the smaller part has r<n vertices. There is also a constant s which is at most the cardinality of a maximum matching in the graph. The goal is to find a minimum-cost matching of size exactly s.

  4. Hungarian algorithm - Wikipedia

    en.wikipedia.org/wiki/Hungarian_algorithm

    The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal–dual methods.It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry.

  5. Kőnig's theorem (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Kőnig's_theorem_(graph...

    An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.

  6. 3-dimensional matching - Wikipedia

    en.wikipedia.org/wiki/3-dimensional_matching

    3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph).

  7. Ruzsa–Szemerédi problem - Wikipedia

    en.wikipedia.org/wiki/Ruzsa–Szemerédi_problem

    In the theory of streaming algorithms for graph matching (for instance to match internet advertisers with advertising slots), the quality of matching covers (sparse subgraphs that approximately preserve the size of a matching in all vertex subsets) is closely related to the density of bipartite graphs that can be partitioned into induced ...

  8. Hall's marriage theorem - Wikipedia

    en.wikipedia.org/wiki/Hall's_marriage_theorem

    A fractional matching in a graph is an assignment of non-negative weights to each edge, such that the sum of weights adjacent to each vertex is at most 1. A fractional matching is X-perfect if the sum of weights adjacent to each vertex is exactly 1. The following are equivalent for a bipartite graph G = (X+Y, E): [13] G admits an X-perfect ...

  9. Hopcroft–Karp algorithm - Wikipedia

    en.wikipedia.org/wiki/Hopcroft–Karp_algorithm

    In computer science, the Hopcroft–Karp algorithm (sometimes more accurately called the Hopcroft–Karp–Karzanov algorithm) [1] is an algorithm that takes a bipartite graph as input and produces a maximum-cardinality matching as output — a set of as many edges as possible with the property that no two edges share an endpoint.