Ad
related to: standard form convert to slope intercept form calculator from equation sheet
Search results
Results from the WOW.Com Content Network
Power functions – relationships of the form = – appear as straight lines in a log–log graph, with the exponent corresponding to the slope, and the coefficient corresponding to the intercept. Thus these graphs are very useful for recognizing these relationships and estimating parameters .
The simplest is the slope-intercept form: = +, from which one can immediately see the slope a and the initial value () =, which is the y-intercept of the graph = (). Given a slope a and one known value () =, we write the point-slope form:
The equation of a line on a linear–log plot, where the abscissa axis is scaled logarithmically (with a logarithmic base of n), would be = +. The equation for a line on a log–linear plot, with an ordinate axis logarithmically scaled (with a logarithmic base of n), would be:
Using this form, vertical lines correspond to equations with b = 0. One can further suppose either c = 1 or c = 0, by dividing everything by c if it is not zero. There are many variant ways to write the equation of a line which can all be converted from one to another by algebraic manipulation. The above form is sometimes called the standard form.
When plotted in the manner described above, the value of the y-intercept (at = / =) will correspond to (), and the slope of the line will be equal to /. The values of y-intercept and slope can be determined from the experimental points using simple linear regression with a spreadsheet .
The Fermat spiral with polar equation = can be converted to the Cartesian coordinates (x, y) by using the standard conversion formulas x = r cos φ and y = r sin φ.Using the polar equation for the spiral to eliminate r from these conversions produces parametric equations for one branch of the curve:
The -intercept of () is indicated by the red dot at (=, =). In analytic geometry , using the common convention that the horizontal axis represents a variable x {\displaystyle x} and the vertical axis represents a variable y {\displaystyle y} , a y {\displaystyle y} -intercept or vertical intercept is a point where the graph of a function or ...
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written
Ad
related to: standard form convert to slope intercept form calculator from equation sheet