Search results
Results from the WOW.Com Content Network
Idle is a state that a computer processor is in when it is not being used by any program. Every program or task that runs on a computer system occupies a certain amount of processing time on the CPU. If the CPU has completed all tasks it is idle. Modern processors use idle time to save power.
However, the idle process does not use up computer resources (even when stated to be running at a high percent). Its CPU time "usage" is a measure of how much CPU time is not being used by other threads. In Windows 2000 and later the threads in the System Idle Process are also used to implement CPU power saving.
In many applications, the CPU and other components are idle much of the time, so idle power contributes significantly to overall system power usage. When the CPU uses power management features to reduce energy use, other components, such as the motherboard and chipset, take up a larger proportion of the computer's energy.
An idle computer has a load number of 0 (the idle process is not counted). Each process using or waiting for CPU (the ready queue or run queue) increments the load number by 1. Each process that terminates decrements it by 1. Most UNIX systems count only processes in the running (on CPU) or runnable (waiting for CPU) states.
The dynamic power (switching power) dissipated by a chip is C·V 2 ·A·f, where C is the capacitance being switched per clock cycle, V is voltage, A is the Activity Factor [1] indicating the average number of switching events per clock cycle by the transistors in the chip (as a unitless quantity) and f is the clock frequency.
For example, hardware timers send interrupts to the CPU at regular intervals. Most operating systems execute a HLT instruction when there is no immediate work to be done, putting the processor into an idle state. In Windows NT, for example, this instruction is run in the "System Idle Process". On x86 processors, the opcode of HLT is 0xF4.
The CPU core is always controlled through the APM BIOS (there is no option to control it through a driver). Drivers can use APM function calls to notify the BIOS about CPU usage, but it is up to the BIOS to act on this information; a driver cannot directly tell the CPU to go into a power saving state.
In addition to the CPU drivers offered by AMD, several motherboard manufacturers have released software to give the end user more control over the Cool 'n' Quiet feature, as well as the other new features of AMD processors and chipsets. Using these applications, one can even control the CPU voltage explicitly. PhenomMsrTweaker (SourceForge link)