Search results
Results from the WOW.Com Content Network
Newton's second law, in modern form, states that the time derivative of the momentum is the force: =. If the mass m {\displaystyle m} does not change with time, then the derivative acts only upon the velocity, and so the force equals the product of the mass and the time derivative of the velocity, which is the acceleration: [ 21 ] F = m d v d t ...
The SI unit of impulse is the newton second (N⋅s), or the Cupp, [1] and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s). The corresponding English engineering unit is the pound-second (lbf⋅s), and in the British Gravitational System, the unit is the slug-foot per second (slug⋅ft/s).
A modern statement of Newton's second law is a vector equation: =, where is the momentum of the system, and is the net force. [ 17 ] : 399 If a body is in equilibrium, there is zero net force by definition (balanced forces may be present nevertheless).
So long as the force acting on a particle is known, Newton's second law is sufficient to describe the motion of a particle. Once independent relations for each force acting on a particle are available, they can be substituted into Newton's second law to obtain an ordinary differential equation, which is called the equation of motion.
Before Newton’s law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature.
Coulomb's law and Newton's law of universal gravitation are based on action at a distance. Historically, action at a distance was the earliest scientific model for gravity and electricity and it continues to be useful in many practical cases. In the 19th and 20th centuries, field models arose to explain these phenomena with more precision.
The dynamics of a rigid body system is described by the laws of kinematics and by the application of Newton's second law or their derivative form, Lagrangian mechanics. The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the ...
The net force is the combined effect of all the forces on the object's acceleration, as described by Newton's second law of motion. When the net force is applied at a specific point on an object, the associated torque can be calculated.