Search results
Results from the WOW.Com Content Network
CHAID is based on a formal extension of AID (Automatic Interaction Detection) [4] and THAID (THeta Automatic Interaction Detection) [5] [6] procedures of the 1960s and 1970s, which in turn were extensions of earlier research, including that performed by Belson in the UK in the 1950s. [7] In 1975, the CHAID technique itself was developed in ...
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
An example of data mining related to an integrated-circuit (IC) production line is described in the paper "Mining IC Test Data to Optimize VLSI Testing." [12] In this paper, the application of data mining and decision analysis to the problem of die-level functional testing is described. Experiments mentioned demonstrate the ability to apply a ...
ATPG (acronym for both automatic test pattern generation and automatic test pattern generator) is an electronic design automation method or technology used to find an input (or test) sequence that, when applied to a digital circuit, enables automatic test equipment to distinguish between the correct circuit behavior and the faulty circuit behavior caused by defects.
Automatic item generation (AIG), or automated item generation, is a process linking psychometrics with computer programming. It uses a computer algorithm to automatically create test items that are the basic building blocks of a psychological test. The method was first described by John R. Bormuth [1] in the 1960s but was not developed until ...
The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...
Offline generation of executable tests means that a model-based testing tool generates test cases as computer-readable assets that can be later run automatically; for example, a collection of Python classes that embodies the generated testing logic. Offline generation of manually deployable tests means that a model-based testing tool generates ...
KNIME (/ n aɪ m / ⓘ), the Konstanz Information Miner, [2] is a free and open-source data analytics, reporting and integration platform.KNIME integrates various components for machine learning and data mining through its modular data pipelining "Building Blocks of Analytics" concept.