Search results
Results from the WOW.Com Content Network
The original formulation of the Schoenflies problem states that not only does every simple closed curve in the plane separate the plane into two regions, one (the "inside") bounded and the other (the "outside") unbounded; but also that these two regions are homeomorphic to the inside and outside of a standard circle in the plane.
Figure 1: Zindler curve. Any of the chords of equal length cuts the curve and the enclosed area into halves. Figure 2: Examples of Zindler curves with a = 8 (blue), a = 16 (green) and a = 24 (red). A Zindler curve is a simple closed plane curve with the defining property that: (L) All chords which cut the curve length into halves have the same ...
Two Dimensional Curves; Visual Dictionary of Special Plane Curves; Curves and Surfaces Index (Harvey Mudd College) National Curve Bank; An elementary treatise on cubic and quartic curves by Alfred Barnard Basset (1901) online at Google Books
A Jordan curve or a simple closed curve in the plane R 2 is the image C of an injective continuous map of a circle into the plane, φ: S 1 → R 2. A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval [a, b] into the plane. It is a plane curve that is not necessarily smooth nor algebraic.
A smooth plane curve is a curve in a real Euclidean plane and is a one-dimensional smooth manifold.This means that a smooth plane curve is a plane curve which "locally looks like a line", in the sense that near every point, it may be mapped to a line by a smooth function.
In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform , the name given to these shapes by Leonhard Euler . [ 1 ]
The inscribed square problem, also known as the square peg problem or the Toeplitz' conjecture, is an unsolved question in geometry: Does every plane simple closed curve contain all four vertices of some square? This is true if the curve is convex or piecewise smooth and in other special cases. The problem was proposed by Otto Toeplitz in 1911. [1]
The points on or above the red curve provide an example of a closed set whose convex hull is open (the open upper half-plane). Topologically, the convex hull of an open set is always itself open, and the convex hull of a compact set is always itself compact. However, there exist closed sets for which the convex hull is not closed. [12]