Search results
Results from the WOW.Com Content Network
An ICC profile defines the bidirectional conversion between a neutral "profile connection" color space (CIE XYZ or Lab) and a selected colorspace, in this case both RGB and CMYK. The precision of the conversion depends on the profile itself, the exact methodology, and because the gamuts do not generally match, the rendering intent and ...
Both are non-absolute, but the conversion between them should maintain the same color. However, in general, converting between two non-absolute color spaces (for example, RGB to CMYK) or between absolute and non-absolute color spaces (for example, RGB to L*a*b*) is almost a meaningless concept.
In order to convert RGB or CMYK values to or from L*a*b*, the RGB or CMYK data must be linearized relative to light. The reference illuminant of the RGB or CMYK data must be known, as well as the RGB primary coordinates or the CMYK printer's reference data in the form of a color lookup table (CLUT).
To see how this works in practice, suppose we have a particular RGB and CMYK color space, and want to convert from this RGB to that CMYK. The first step is to obtain the two ICC profiles concerned. To perform the conversion, each RGB triplet is first converted to the Profile connection space (PCS) using the RGB profile.
It was designed to encompass most of the colors achievable on CMYK color printers, but by using RGB primary chromaticities on a device such as the computer display. The Adobe RGB color space encompasses roughly 50% of the visible colors specified by the Lab color space, improving upon the gamut of the sRGB color space primarily in cyan-greens.
This so-called gamut mismatch occurs for example, when we translate from the RGB color space with a wider gamut into the CMYK color space with a narrower gamut range. In this example, the dark highly saturated purplish-blue color of a typical computer monitor's "blue" primary is impossible to print on paper with a typical CMYK printer. The ...
In the CIE 1931 model, Y is the luminance, Z is quasi-equal to blue (of CIE RGB), and X is a mix of the three CIE RGB curves chosen to be nonnegative (see § Definition of the CIE XYZ color space). Setting Y as luminance has the useful result that for any given Y value, the XZ plane will contain all possible chromaticities at that luminance.
RGB is a device-dependent color model: different devices detect or reproduce a given RGB value differently, since the color elements (such as phosphors or dyes) and their response to the individual red, green, and blue levels vary from manufacturer to manufacturer, or even in the same device over time.