Search results
Results from the WOW.Com Content Network
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
Pell's equation for n = 2 and six of its integer solutions. Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form =, where n is a given positive nonsquare integer, and integer solutions are sought for x and y.
This sequence of approximations begins 1 / 1 , 3 / 2 , 7 / 5 , 17 / 12 , and 41 / 29 , so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers ; these numbers form a second infinite ...
One can prove [citation needed] that = is the largest possible number for which the stopping criterion | + | < ensures ⌊ + ⌋ = ⌊ ⌋ in the algorithm above.. In implementations which use number formats that cannot represent all rational numbers exactly (for example, floating point), a stopping constant less than 1 should be used to protect against round-off errors.
The Colebrook Equation and the Haaland's solution are written for 1/sqrt(f) rather than for 'f' and this is IMHO the right thing to do. However the Swamee-Jain and Serghide's solutions are written for 'f' instead of 1/sqrt(f) which makes them inconsistent with the first two equations and makes them more difficult to understand.