Search results
Results from the WOW.Com Content Network
Many radionuclides do not produce gamma rays with energy high enough to induce this reaction. The isotopes used in food irradiation (cobalt-60, caesium-137) both have energy peaks below this cutoff and thus cannot induce radioactivity in the food. [4] The conditions inside certain types of nuclear reactors with high neutron flux can induce ...
The energy of photons, the kinetic energy of emitted particles, and, later, the thermal energy of the surrounding matter, all contribute to the invariant mass of the system. Thus, while the sum of the rest masses of the particles is not conserved in radioactive decay, the system mass and system invariant mass (and also the system total energy ...
Radiochemistry is the chemistry of radioactive materials, where radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads to a substance being described as being inactive as the isotopes are stable).
Infrared or red radiation from a common household radiator or electric heater is an example of thermal radiation, as is the heat emitted by an operating incandescent light bulb. Thermal radiation is generated when energy from the movement of charged particles within atoms is converted to electromagnetic radiation.
Radiation chemistry is the study of the chemical effects of radiation on matter; this is very different from radiochemistry as no radioactivity needs to be present in the material which is being chemically changed by the radiation. An example is the conversion of water into hydrogen gas and hydrogen peroxide. Prior to radiation chemistry, it ...
By causing the materials to become radioactive (mainly by neutron activation, or in presence of high-energy gamma radiation by photodisintegration). By nuclear transmutation of the elements within the material including, for example, the production of Hydrogen and Helium which can in turn alter the mechanical properties of the materials and ...
In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another.
When passing through matter, they ionize and thus lose energy in many small steps. The distance to the point where the charged particle has lost all its energy is called the range of the particle. The range depends upon the type of particle, its initial energy, and the material it traverses.