enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    The cardinality or "size" of a multiset is the sum of the multiplicities of all its elements. For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a, b, and c are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6.

  3. HyperLogLog - Wikipedia

    en.wikipedia.org/wiki/HyperLogLog

    HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. [1] Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators ...

  4. Fuzzy set - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_set

    A fuzzy set is a pair (,) where is a set (often required to be non-empty) and : [,] a membership function. The reference set (sometimes denoted by or ) is called universe of discourse, and for each , the value () is called the grade of membership of in (,).

  5. Set (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Set_(abstract_data_type)

    In some cases a multiset in this counting sense may be generalized to allow negative values, as in Python. C++'s Standard Template Library implements both sorted and unsorted multisets. It provides the multiset class for the sorted multiset, as a kind of associative container, which implements this multiset using a self-balancing binary search ...

  6. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    Inclusion–exclusion illustrated by a Venn diagram for three sets. Generalizing the results of these examples gives the principle of inclusion–exclusion. To find the cardinality of the union of n sets: Include the cardinalities of the sets. Exclude the cardinalities of the pairwise intersections.

  7. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    Besides the cardinality, which describes the size of a set, ordered sets also form a subject of set theory. The axiom of choice guarantees that every set can be well-ordered, which means that a total order can be imposed on its elements such that every nonempty subset has a first element with respect to that order.

  8. Cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Cardinal_assignment

    The goal of a cardinal assignment is to assign to every set A a specific, unique set that is only dependent on the cardinality of A. This is in accordance with Cantor 's original vision of cardinals: to take a set and abstract its elements into canonical "units" and collect these units into another set, such that the only thing special about ...

  9. Flajolet–Martin algorithm - Wikipedia

    en.wikipedia.org/wiki/Flajolet–Martin_algorithm

    Estimate the cardinality of as /, where . The idea is that if n {\displaystyle n} is the number of distinct elements in the multiset M {\displaystyle M} , then B I T M A P [ 0 ] {\displaystyle \mathrm {BITMAP} [0]} is accessed approximately n / 2 {\displaystyle n/2} times, B I T M A P [ 1 ] {\displaystyle \mathrm {BITMAP} [1]} is accessed ...