Search results
Results from the WOW.Com Content Network
The height of a node is the length of the longest downward path to a leaf from that node. The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and ...
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
To traverse arbitrary trees (not necessarily binary trees) with depth-first search, perform the following operations at each node: If the current node is empty then return. Visit the current node for pre-order traversal. For each i from 1 to the current node's number of subtrees − 1, or from the latter to the former for reverse traversal, do:
A labeled binary tree of size 9 (the number of nodes in the tree) and height 3 (the height of a tree defined as the number of edges or links from the top-most or root node to the farthest leaf node), with a root node whose value is 1. The above tree is unbalanced and not sorted.
The randomized binary search tree, introduced by Martínez and Roura subsequently to the work of Aragon and Seidel on treaps, [7] stores the same nodes with the same random distribution of tree shape, but maintains different information within the nodes of the tree in order to maintain its randomized structure.
In 2013, John Iacono published a paper which uses the geometry of binary search trees to provide an algorithm which is dynamically optimal if any binary search tree algorithm is dynamically optimal. [11] Nodes are interpreted as points in two dimensions, and the optimal access sequence is the smallest arborally satisfied superset of those ...
The cost of a search is modeled by assuming that the search tree algorithm has a single pointer into a binary search tree, which at the start of each search points to the root of the tree. The algorithm may then perform any sequence of the following operations: Move the pointer to its left child. Move the pointer to its right child.