Search results
Results from the WOW.Com Content Network
The Cope rearrangement is an extensively studied organic reaction involving the [3,3] sigmatropic rearrangement of 1,5-dienes. [ 14 ] [ 15 ] [ 16 ] It was developed by Arthur C. Cope . For example, 3,4-dimethyl-1,5-hexadiene heated to 300 °C yields 2,6-octadiene.
Rearrangement of Mariano's diene. One example was the photolysis of Mariano's compound, 3,3‑dimethyl-1,1,5,5‑tetraphenyl-1,4‑pentadiene. In this symmetric diene, the active π bonds are conjugated to arenes, which does not inhibit the reaction. [4] [5] [6] Pratt's diene has two possibilities for rearrangement: a and b.
The rearrangement is widely used in organic synthesis. It is symmetry-allowed when it is suprafacial on all components. The transition state of the molecule passes through a boat or chair like transition state. An example of the Cope rearrangement is the expansion of a cyclobutane ring to a cycloocta-1,5-diene ring:
In organic chemistry, an electrocyclic reaction is a type of pericyclic, rearrangement reaction where the net result is one pi bond being converted into one sigma bond or vice versa. [1] These reactions are usually categorized by the following criteria: Reactions can be either photochemical or thermal.
Bergman reaction of cyclodeca-3-ene-1,5-diyne Naturally occurring compounds such as calicheamicin contain the same 10-membered ring and are found to be cytotoxic . These compounds generate the diradical intermediate described above which can cause single and double stranded DNA cuts. [ 4 ]
Similar results were found in a 1995 study by Suarez, Sordo, and Sordo which used ab initio calculations to study the kinetic and thermodynamic control of the reaction of sulfur dioxide with 1,3-dienes. [4] Proposed transition state for reaction of 1,2-dimethylidenecyclohexane with SO 2 to give a sulfolene through a cheletropic reaction
[4] [5] [6] These reactions are metal-catalyzed and proceed through a metallacyclobutane intermediate. [7] It was first published by Dider Villemin in 1980 describing the synthesis of an Exaltolide precursor, [ 8 ] and later become popularized by Robert H. Grubbs and Richard R. Schrock , who shared the Nobel Prize in Chemistry , along with Yves ...
The reaction is then completed either by the reformation of the carbonyl through an 1,2-rearrangement or by the formation of the epoxide. There are two possible carbonyl products: one formed by migration of R 1 (4) and the other by migration of R 2 (5). The relative yield of each possible carbonyl is determined by the migratory preferences of ...