Search results
Results from the WOW.Com Content Network
Pumping lemma sometimes called the Bar-Hillel lemma; Microeconomics. Hotelling's lemma; Shephard's lemma ... An example of a covering described by the Knaster ...
In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem " or an "auxiliary theorem".
In morphology and lexicography, a lemma (pl.: lemmas or lemmata) is the canonical form, [1] dictionary form, or citation form of a set of word forms. [2] In English, for example, break , breaks , broke , broken and breaking are forms of the same lexeme , with break as the lemma by which they are indexed.
For example, if p = 19, a = 133, b = 143, then ab = 133 × 143 = 19019, and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as well. In fact, 133 = 19 × 7. The lemma first appeared in Euclid's Elements, and is a fundamental result in elementary number theory.
The pumping lemma is often used to prove that a particular language is non-regular: a proof by contradiction may consist of exhibiting a string (of the required length) in the language that lacks the property outlined in the pumping lemma. Example: The language = {:} over the alphabet = {,} can be shown to be non-regular as follows:
In mathematics, Grönwall's inequality (also called Grönwall's lemma or the Grönwall–Bellman inequality) allows one to bound a function that is known to satisfy a certain differential or integral inequality by the solution of the corresponding differential or integral equation. There are two forms of the lemma, a differential form and an ...
The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the ...
Zorn's lemma is also equivalent to the strong completeness theorem of first-order logic. [23] Moreover, Zorn's lemma (or one of its equivalent forms) implies some major results in other mathematical areas. For example, Banach's extension theorem which is used to prove one of the most fundamental results in functional analysis, the Hahn–Banach ...