Search results
Results from the WOW.Com Content Network
LLVM can accept the IR from the GNU Compiler Collection (GCC) toolchain, allowing it to be used with a wide array of extant compiler front-ends written for that project. LLVM can also be built with gcc after version 7.5. [37] LLVM can also generate relocatable machine code at compile-time or link-time or even binary machine code at runtime.
The AMD Optimizing C/C++ Compiler (AOCC) is an optimizing C/C++ and Fortran compiler suite from AMD targeting 32-bit and 64-bit Linux platforms. [1] [2] It is a proprietary fork of LLVM + Clang with various additional patches to improve performance for AMD's Zen microarchitecture in Epyc, and Ryzen microprocessors.
IDE License Windows Linux macOS Other platforms Debugger GUI builder Toolchain Profiler Code coverage Autocomplete Static code analysis GUI-based design Class browser
MILEPOST GCC: interactive plugin-based open-source research compiler that combines the strength of GCC and the flexibility of the common Interactive Compilation Interface that transforms production compilers into interactive research toolsets.
The LLVM project originally intended to use GCC's front end. The GCC source code, however, is large and somewhat cumbersome; as one long-time GCC developer put it referring to LLVM, "Trying to make the hippo dance is not really a lot of fun". [18] Besides, Apple software uses Objective-C, which is a low priority for GCC developers.
GCC has been ported to more platforms and instruction set architectures than any other compiler, and is widely deployed as a tool in the development of both free and proprietary software. GCC is also available for many embedded systems, including ARM-based and Power ISA-based chips.
Mingw-w64 includes a port of the GNU Compiler Collection (GCC), GNU Binutils for Windows (assembler, linker, archive manager), a set of freely distributable Windows specific header files and static import libraries for the Windows API, a Windows-native version of the GNU Project's GNU Debugger, and miscellaneous utilities.
Until version 12.0.0, the instruction scheduling in LLVM/Clang could only accept a -march (called target-cpu in LLVM parlance) switch for both instruction set and scheduling. Version 12 adds support for -mtune (tune-cpu) for x86 only. [3] Sources of information on latency and port usage include: GCC and LLVM;