Search results
Results from the WOW.Com Content Network
= molar mass of Earth's air: 0.0289644 kg/mol; The value of subscript b ranges from 0 to 6 in accordance with each of seven successive layers of the atmosphere shown in the table below. The reference value for ρ b for b = 0 is the defined sea level value, ρ 0 = 1.2250 kg/m 3 or 0.0023768908 slug/ft 3.
How much gas is present could be specified by giving the mass instead of the chemical amount of gas. Therefore, an alternative form of the ideal gas law may be useful. The chemical amount, n (in moles), is equal to total mass of the gas (m) (in kilograms) divided by the molar mass, M (in kilograms per mole): =.
In thermodynamics, the specific volume of a substance (symbol: ν, nu) is the quotient of the substance's volume (V) to its mass (m): = It is a mass-specific intrinsic property of the substance. It is the reciprocal of density ρ and it is also related to the molar volume and molar mass:
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
This occurs because the molar mass of water vapor (18 g/mol) is less than the molar mass of dry air [note 2] (around 29 g/mol). For any ideal gas, at a given temperature and pressure, the number of molecules is constant for a particular volume (see Avogadro's Law). So when water molecules (water vapor) are added to a given volume of air, the ...
For example, a mass flow rate of 1,000 kg/h of air at 1 atmosphere of absolute pressure is 455 SCFM when defined at 32 °F (0 °C) but 481 SCFM when defined at 60 °F (16 °C). Due to the variability of the definition and the consequences of ambiguity, it is best engineering practice to state what standard conditions are used when communicating ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
P water S = Partial pressure of water in saturated air (that is, at 100% relative humidity; in this case the partial pressure is equal to the vapour pressure, which can be determined as a function of ambient temperature) P water B = Partial pressure of water in saturated air in 37 °C = 47 mmHg; T S = Standard temperature in kelvins (K) = 273 K