enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    The most general proper Lorentz transformation Λ(v, θ) includes a boost and rotation together, and is a nonsymmetric matrix. As special cases, Λ(0, θ) = R(θ) and Λ(v, 0) = B(v). An explicit form of the general Lorentz transformation is cumbersome to write down and will not be given here.

  3. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.

  4. Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Lorentz_group

    Hendrik Antoon Lorentz (1853–1928), after whom the Lorentz group is named.. In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena.

  5. Four-vector - Wikipedia

    en.wikipedia.org/wiki/Four-vector

    Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...

  6. Representation theory of the Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    The point to be made is that the field operator transforms according to a finite-dimensional non-unitary representation of the Lorentz group, while the creation operator transforms under the infinite-dimensional unitary representation of the Poincare group characterized by the mass and spin (m, s) of the particle.

  7. History of Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/History_of_Lorentz...

    In the special relativity, Lorentz transformations exhibit the symmetry of Minkowski spacetime by using a constant c as the speed of light, and a parameter v as the relative velocity between two inertial reference frames. Using the above conditions, the Lorentz transformation in 3+1 dimensions assume the form:

  8. Minkowski space - Wikipedia

    en.wikipedia.org/wiki/Minkowski_space

    A Lorentz transformation is represented by a matrix that acts on the four-vector, changing its components. This matrix can be thought of as a rotation matrix in four-dimensional space, which rotates the four-vector around a particular axis. x 2 + y 2 + z 2 + ( i c t ) 2 = constant . {\displaystyle x^{2}+y^{2}+z^{2}+(ict)^{2}={\text{constant}}.}

  9. Relativistic angular momentum - Wikipedia

    en.wikipedia.org/wiki/Relativistic_angular_momentum

    The angular momentum tensor M is indeed a tensor, the components change according to a Lorentz transformation matrix Λ, as illustrated in the usual way by tensor index notation ′ = ′ ′ ′ ′ = = =, where, for a boost (without rotations) with normalized velocity β = v/c, the Lorentz transformation matrix elements are = = = = + and the ...