Search results
Results from the WOW.Com Content Network
Hudson's equation, also known as Hudson formula, is an equation used by coastal engineers to calculate the minimum size of riprap (armourstone) required to provide satisfactory stability characteristics for rubble structures such as breakwaters under attack from storm wave conditions.
A back-of-the-envelope calculation is a rough calculation, typically jotted down on any available scrap of paper such as an envelope. It is more than a guess but less than an accurate calculation or mathematical proof. The defining characteristic of back-of-the-envelope calculations is the use of simplified assumptions.
In order to increase the calculation speed for viscosity calculations based on CS theory, which is important in e.g. compositional reservoir simulations, while keeping the accuracy of the CS method, Pedersen et al. (1984, 1987, 1989) [17] [18] [2] proposed a CS method that uses a simple (or conventional) CS formula when calculating the reduced ...
A difference engine is an automatic mechanical calculator designed to tabulate polynomial functions. It was designed in the 1820s, and was created by Charles Babbage . The name difference engine is derived from the method of finite differences , a way to interpolate or tabulate functions by using a small set of polynomial co-efficients.
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !
A summation-by-parts (SBP) finite difference operator conventionally consists of a centered difference interior scheme and specific boundary stencils that mimics behaviors of the corresponding integration-by-parts formulation. [3] [4] The boundary conditions are usually imposed by the Simultaneous-Approximation-Term (SAT) technique. [5]
The absolute difference between A t and F t is divided by half the sum of absolute values of the actual value A t and the forecast value F t. The value of this calculation is summed for every fitted point t and divided again by the number of fitted points n.