Search results
Results from the WOW.Com Content Network
The band structure has been generalised to wavevectors that are complex numbers, resulting in what is called a complex band structure, which is of interest at surfaces and interfaces. Each model describes some types of solids very well, and others poorly. The nearly free electron model works well for metals, but poorly for non-metals.
The energy of the electrons in the "empty lattice" is the same as the energy of free electrons. The model is useful because it clearly illustrates a number of the sometimes very complex features of energy dispersion relations in solids which are fundamental to all electronic band structures.
Dispersion relation for the 2D nearly free electron model as a function of the underlying crystalline structure. The nearly free electron model is a modification of the free-electron gas model which includes a weak periodic perturbation meant to model the interaction between the conduction electrons and the ions in a crystalline solid.
Energy vs. crystal momentum for a semiconductor with a direct band gap, showing that an electron can shift from the highest-energy state in the valence band (red) to the lowest-energy state in the conduction band (green) without a change in crystal momentum. Depicted is a transition in which a photon excites an electron from the valence band to ...
Note that the Heisenberg uncertainty principle prevents the band diagram from being drawn with a high positional resolution, since the band diagram shows energy bands (as resulting from a momentum-dependent band structure). While a basic band diagram only shows electron energy levels, often a band diagram will be decorated with further features.
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.
In graphs of the electronic band structure of solids, the band gap refers to the energy difference (often expressed in electronvolts) between the top of the valence band and the bottom of the conduction band in insulators and semiconductors. It is the energy required to promote an electron from the valence band to the conduction band.
Anderson's rule is used for the construction of energy band diagrams of the heterojunction between two semiconductor materials. Anderson's rule states that when constructing an energy band diagram, the vacuum levels of the two semiconductors on either side of the heterojunction should be aligned (at the same energy). [1]