Search results
Results from the WOW.Com Content Network
In bacteria, transcription and translation can occur simultaneously in the cytoplasm of the cell, whereas in eukaryotes transcription occurs in the nucleus and translation occurs in the cytoplasm. [14] There is only one type of bacterial RNA polymerase whereas eukaryotes have 3 types. [2] Bacteria have a σ-factor that detects and binds to ...
Several cell function specific transcription factors (there are about 1,600 transcription factors in a human cell [14]) generally bind to specific motifs on an enhancer [15] and a small combination of these enhancer-bound transcription factors, when brought close to a promoter by a DNA loop, govern level of transcription of the target gene.
For example, some prokaryotic bacterial mRNAs serve as templates for synthesis of proteins at the same time they are being produced via transcription. Alternatively, pre-mRNA of eukaryotic cells undergo a wide range of modifications prior to their transport from the nucleus to cytoplasm where their mature forms are translated. [9]
During transcription, RNA polymerase makes a copy of a gene from the DNA to mRNA as needed. This process differs slightly in eukaryotes and prokaryotes. One notable difference is that prokaryotic RNA polymerase associates with DNA-processing enzymes during transcription so that processing can proceed during transcription.
It is orchestrated by transcription factors and other proteins working in concert to finely tune the amount of RNA being produced through a variety of mechanisms. Bacteria and eukaryotes have very different strategies of accomplishing control over transcription, but some important features remain conserved between the two. Most importantly is ...
Electron micrographs of stained cell-free protein synthesis reactions revealed branched assemblies in which strings of ribosomes are linked to a central DNA fibre. [27] DNA isolated from bacterial cells co-sediment with ribosomes, further supporting the conclusion that transcription and translation occur together. [26]
Polysomes are formed during the elongation phase when ribosomes and elongation factors synthesize the encoded polypeptide. Multiple ribosomes move along the coding region of mRNA, creating a polysome. The ability of multiple ribosomes to function on an mRNA molecule explains the limited abundance of mRNA in the cell. [3]
A sigma factor (σ factor or specificity factor) is a protein needed for initiation of transcription in bacteria. [1] [2] It is a bacterial transcription initiation factor that enables specific binding of RNA polymerase (RNAP) to gene promoters. It is homologous to archaeal transcription factor B and to eukaryotic factor TFIIB. [3]