Search results
Results from the WOW.Com Content Network
Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]
Intuitively, one can think of the inhomogeneous problem as a set of homogeneous problems each starting afresh at a different time slice t = t 0. By linearity, one can add up (integrate) the resulting solutions through time t 0 and obtain the solution for the inhomogeneous problem. This is the essence of Duhamel's principle.
In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations.. For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or undetermined coefficients with considerably less effort, although those methods leverage heuristics that ...
If the problem is to solve a Dirichlet boundary value problem, the Green's function should be chosen such that G(x,x′) vanishes when either x or x′ is on the bounding surface. Thus only one of the two terms in the surface integral remains. If the problem is to solve a Neumann boundary value problem, it might seem logical to choose Green's ...
In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs). [1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique.
Complex replacement is used for solving differential equations when the non-homogeneous term is expressed in terms of a sinusoidal function or an exponential function, which can be converted into a complex exponential function differentiation and integration. Such complex exponential function is easier to manipulate than the original function.
Ordinary differential equations occur in many scientific disciplines, including physics, chemistry, biology, and economics. [1] In addition, some methods in numerical partial differential equations convert the partial differential equation into an ordinary differential equation, which must then be solved.
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.