Search results
Results from the WOW.Com Content Network
In mathematics, a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane. Each set of initial conditions is represented by a different point or curve. Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical trajectories in the phase space.
Anyway, using the homotopy analysis method or harmonic balance, one can derive a frequency response equation in the following form: [9] [5] [() + ()] =. For the parameters of the Duffing equation, the above algebraic equation gives the steady state oscillation amplitude z {\displaystyle z} at a given excitation frequency.
In mathematics, a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane. Each set of initial conditions is represented by a different point or curve. Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical trajectories in
In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables).
Phase portrait showing saddle-node bifurcation. Bifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family of curves, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations.
A plot of () (left) and its phase line (right). In this case, a and c are both sinks and b is a source. In mathematics , a phase line is a diagram that shows the qualitative behaviour of an autonomous ordinary differential equation in a single variable, d y d x = f ( y ) {\displaystyle {\tfrac {dy}{dx}}=f(y)} .
Domain coloring plot of the function f(x) = (x 2 − 1)(x − 2 − i) 2 / x 2 + 2 + 2i , using the structured color function described below. In complex analysis, domain coloring or a color wheel graph is a technique for visualizing complex functions by assigning a color to each point of the complex plane. By assigning points on the ...
English: Sadle-node singular point phase portrait with one of possible central manifolds This is a phase portrait of the simple saddle-node equation {˙ = ˙ = Its phase flow looks like: = / (/), = ()