Search results
Results from the WOW.Com Content Network
It is a kind of exchange using counter flow arrangement. The maximum amount of heat or mass transfer that can be obtained is higher with countercurrent than co-current (parallel) exchange because countercurrent maintains a slowly declining difference or gradient (usually temperature or concentration difference). In cocurrent exchange the ...
The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...
In counter-flow heat exchangers the fluids enter the exchanger from opposite ends. The counter current design is the most efficient, in that it can transfer the most heat from the heat (transfer) medium per unit mass due to the fact that the average temperature difference along any unit length is higher. See countercurrent exchange.
U is the heat transfer coefficient (watts per kelvin per square meter), A is the exchange area. Note that estimating the heat transfer coefficient may be quite complicated. This holds both for cocurrent flow, where the streams enter from the same end, and for countercurrent flow, where they enter from different ends.
Temperature vs. heat load diagram of hot stream (H 2 O entering at 20 bar, 473.15 K, and 4 kg/s) and cold stream (R-11 entering at 18 bar, 303.15 K, and 5 kg/s) in a counter-flow heat exchanger. "Pinch" is the point of closest approach between the hot and cold streams in the T vs. H diagram.
Counter-current heat exchange. Add languages. Add links. ... Download QR code; Print/export Download as PDF; Printable version; In other projects
Fluid flow simulation for a shell-and-tube style exchanger; The shell inlet is at the top rear and outlet in the foreground at the bottom Shell and tube heat exchanger. A shell-and-tube heat exchanger is a class of heat exchanger designs. [1] [2] It is the most common type of heat exchanger in oil refineries and other large chemical processes ...
A counter flow heat exchanger is the most efficient type of heat exchanger in transferring heat energy from one circuit to the other [citation needed]. However, for a more complete picture of heat exchanger efficiency, exergetic considerations must be taken into account. Thermal efficiencies of an internal combustion engine are typically higher ...