enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    [1]: 22 [2]: 10 For example, in a floating-point arithmetic with five base-ten digits, the sum 12.345 + 1.0001 = 13.3451 might be rounded to 13.345. The term floating point refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number.

  3. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    It covered only binary floating-point arithmetic. A new version, IEEE 754-2008, was published in August 2008, following a seven-year revision process, chaired by Dan Zuras and edited by Mike Cowlishaw. It replaced both IEEE 754-1985 (binary floating-point arithmetic) and IEEE 854-1987 Standard for Radix-Independent Floating-Point Arithmetic ...

  4. IEEE 754-2008 revision - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-2008_revision

    The new IEEE 754 (formally IEEE Std 754-2008, the IEEE Standard for Floating-Point Arithmetic) was published by the IEEE Computer Society on 29 August 2008, and is available from the IEEE Xplore website [4] This standard replaces IEEE 754-1985. IEEE 854, the Radix-Independent floating-point standard was withdrawn in December 2008.

  5. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    Some operations of floating-point arithmetic are invalid, such as taking the square root of a negative number. The act of reaching an invalid result is called a floating-point exception. An exceptional result is represented by a special code called a NaN, for "Not a Number". All NaNs in IEEE 754-1985 have this format: sign = either 0 or 1.

  6. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    Additionally, they are frequently encountered as a pedagogical tool in computer-science courses to demonstrate the properties and structures of floating-point arithmetic and IEEE 754 numbers. Minifloats with 16 bits are half-precision numbers (opposed to single and double precision ).

  7. 2Sum - Wikipedia

    en.wikipedia.org/wiki/2Sum

    Provided the floating-point arithmetic is correctly rounded to nearest (with ties resolved any way), as is the default in IEEE 754, and provided the sum does not overflow and, if it underflows, underflows gradually, it can be proven that + = +. [1] [6] [2]

  8. Sterbenz lemma - Wikipedia

    en.wikipedia.org/wiki/Sterbenz_lemma

    In floating-point arithmetic, the Sterbenz lemma or Sterbenz's lemma [1] is a theorem giving conditions under which floating-point differences are computed exactly. It is named after Pat H. Sterbenz, who published a variant of it in 1974.

  9. IEEE 854-1987 - Wikipedia

    en.wikipedia.org/wiki/IEEE_854-1987

    IEEE 754-2008 also had many other updates to the IEEE floating-point standardisation. IEEE 854 arithmetic was first commercially implemented in the HP-71B handheld computer, which used decimal floating point with 12 digits of significand, and an exponent range of ±499, with a 15 digit significand used for intermediate results.