Search results
Results from the WOW.Com Content Network
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-point arithmetic is often used to allow very small and very large real numbers that require fast processing times.
In floating-point arithmetic, the Sterbenz lemma or Sterbenz's lemma [1] is a theorem giving conditions under which floating-point differences are computed exactly. It is named after Pat H. Sterbenz, who published a variant of it in 1974.
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
The Siemens 7.700 and 7.500 series mainframes and their successors support the same floating-point formats and instructions as the IBM System/360 and System/370. The VAX processor implemented non-IEEE quadruple-precision floating point as its "H Floating-point" format. It had one sign bit, a 15-bit exponent and 112-fraction bits, however the ...
Floating-point arithmetic operations are performed by software, and double precision is not supported at all. The extended format occupies three 16-bit words, with the extra space simply ignored. [3] The IBM System/360 supports a 32-bit "short" floating-point format and a 64-bit "long" floating-point format. [4]
IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2]
Floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance in computing, useful in fields of scientific computations that require floating-point calculations. [1] For such cases, it is a more accurate measure than measuring instructions per second. [citation needed]