Search results
Results from the WOW.Com Content Network
The siemens (symbol: S) is the unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is equal to the reciprocal of one ohm (Ω −1) and is also referred to as the mho.
The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). [1] [2] [3] For example, if a 1 m 3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.
where is the length of the conductor, measured in metres (m), A is the cross-sectional area of the conductor measured in square metres (m 2), σ is the electrical conductivity measured in siemens per meter (S·m −1), and ρ is the electrical resistivity (also called specific electrical resistance) of the material, measured in ohm-metres (Ω ...
A legal ohm, a reproducible standard, was defined by the international conference of electricians at Paris in 1884 as the resistance of a mercury column of specified weight and 106 cm long; this was a compromise value between the B. A. unit (equivalent to 104.7 cm), the Siemens unit (100 cm by definition), and the CGS unit. [13]
Admittance Y, measured in siemens, is defined as the inverse of impedance Z, measured in ohms: Resistance is a measure of the opposition of a circuit to the flow of a steady current, while impedance takes into account not only the resistance but also dynamic effects (known as reactance). Likewise, admittance is not only a measure of the ease ...
The SI unit for transconductance is the siemens, with the symbol S, as in conductance. ... The SI unit for transresistance is simply the ohm, as in resistance ...
Y is the complex admittance, measured in siemens; G is the real-valued conductance, measured in siemens; j is the imaginary unit (i.e. j 2 = −1); and; B is the real-valued susceptance, measured in siemens.
The commonly used standard cell has a width of 1 cm [clarify], and thus for very pure water in equilibrium with air would have a resistance of about 10 6 ohms, known as a megohm. Ultra-pure water could achieve 18 megohms or more. Thus in the past, megohm-cm was used, sometimes abbreviated to "megohm".