Search results
Results from the WOW.Com Content Network
Applying these two concepts results in an efficient data structure and algorithms for the representation of sets and relations. [10] [11] By extending the sharing to several BDDs, i.e. one sub-graph is used by several BDDs, the data structure Shared Reduced Ordered Binary Decision Diagram is defined. [2]
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]
A zero-suppressed decision diagram (ZSDD or ZDD) is a particular kind of binary decision diagram (BDD) with fixed variable ordering. This data structure provides a canonically compact representation of sets, particularly suitable for certain combinatorial problems. Recall the Ordered Binary Decision Diagram (OBDD) reduction strategy, i.e. a ...
The divide-and-conquer paradigm is often used to find an optimal solution of a problem. Its basic idea is to decompose a given problem into two or more similar, but simpler, subproblems, to solve them in turn, and to compose their solutions to solve the given problem. Problems of sufficient simplicity are solved directly.
In computer science, the dining philosophers problem is an example problem often used in concurrent algorithm design to illustrate synchronization issues and techniques for resolving them. It was originally formulated in 1965 by Edsger Dijkstra as a student exam exercise, presented in terms of computers competing for access to tape drive ...
In mathematics, binary splitting is a technique for speeding up numerical evaluation of many types of series with rational terms. In particular, it can be used to evaluate hypergeometric series at rational points.
Karatsuba's basic step works for any base B and any m, but the recursive algorithm is most efficient when m is equal to n/2, rounded up. In particular, if n is 2 k, for some integer k, and the recursion stops only when n is 1, then the number of single-digit multiplications is 3 k, which is n c where c = log 2 3.
In binary (base-2) math, multiplication by a power of 2 is merely a register shift operation. Thus, multiplying by 2 is calculated in base-2 by an arithmetic shift. The factor (2 −1) is a right arithmetic shift, a (0) results in no operation (since 2 0 = 1 is the multiplicative identity element), and a (2 1) results in a left arithmetic shift ...