enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    A real tensor in 3D (i.e., one with a 3x3 component matrix) has as many as six independent invariants, three being the invariants of its symmetric part and three characterizing the orientation of the axial vector of the skew-symmetric part relative to the principal directions of the symmetric part.

  3. Principle of covariance - Wikipedia

    en.wikipedia.org/wiki/Principle_of_covariance

    An example of a covariant equation is the Lorentz force equation of motion of a charged particle in an electromagnetic field (a generalization of Newton's second law) m d u a d s = q F a b u b , {\displaystyle m{\frac {du^{a}}{ds}}=qF^{ab}u_{b},} [ citation needed ]

  4. Invariant (physics) - Wikipedia

    en.wikipedia.org/wiki/Invariant_(physics)

    In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition .

  5. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.

  6. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    Similarly, every second rank tensor (such as the stress and the strain tensors) has three independent invariant quantities associated with it. One set of such invariants are the principal stresses of the stress tensor, which are just the eigenvalues of the stress tensor. Their direction vectors are the principal directions or eigenvectors.

  7. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The vector spaces of a tensor product need not be the same, and sometimes the elements of such a more general tensor product are called "tensors". For example, an element of the tensor product space V ⊗ W is a second-order "tensor" in this more general sense, [29] and an order-d tensor may likewise be defined as an element of a tensor product ...

  8. Covariant transformation - Wikipedia

    en.wikipedia.org/wiki/Covariant_transformation

    The explicit form of a covariant transformation is best introduced with the transformation properties of the derivative of a function. Consider a scalar function f (like the temperature at a location in a space) defined on a set of points p, identifiable in a given coordinate system , =,, … (such a collection is called a manifold).

  9. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    In GR, however, certain tensors that have a physical interpretation can be classified with the different forms of the tensor usually corresponding to some physics. Examples of tensor classifications useful in general relativity include the Segre classification of the energy–momentum tensor and the Petrov classification of the Weyl tensor ...

  1. Related searches second invariant of a tensor in physics definition example equation solver

    invariants of tensorsprincipal invariants of tensors
    invariant of tensors dimension 3invariant physics definition