Search results
Results from the WOW.Com Content Network
Adaptive histogram equalization (AHE) is a computer image processing technique used to improve contrast in images. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image.
Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images. There are two ways to think about and implement histogram equalization, either as image change or as palette change.
Otsu's method performs well when the histogram has a bimodal distribution with a deep and sharp valley between the two peaks. [ 6 ] Like all other global thresholding methods, Otsu's method performs badly in case of heavy noise, small objects size, inhomogeneous lighting and larger intra-class than inter-class variance. [ 7 ]
An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]
An adaptive equalizer is an equalizer that automatically adapts to time-varying properties of the communication channel. [1] It is frequently used with coherent modulations such as phase-shift keying , mitigating the effects of multipath propagation and Doppler spreading .
A v-optimal histogram is based on the concept of minimizing a quantity which is called the weighted variance in this context. [1] This is defined as = =, where the histogram consists of J bins or buckets, n j is the number of items contained in the jth bin and where V j is the variance between the values associated with the items in the jth bin.
A histogram is a representation of tabulated frequencies, shown as adjacent rectangles or squares (in some of situations), erected over discrete intervals (bins), with an area proportional to the frequency of the observations in the interval. The height of a rectangle is also equal to the frequency density of the interval, i.e., the frequency ...
The reciprocal of the Greenwood frequency is sometimes known as the Greenwood or atmospheric time constant (τ 0). Since the distortions are approximately constant over a period less than this time constant, adapting the optical system at a faster rate yields negligible benefits; conversely, adaptive system performance degrades significantly as ...