enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scalar projection - Wikipedia

    en.wikipedia.org/wiki/Scalar_projection

    The term scalar component refers sometimes to scalar projection, as, in Cartesian coordinates, the components of a vector are the scalar projections in the directions of the coordinate axes.

  3. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The projection of a onto b can be decomposed into a direction and a scalar magnitude by writing it as = ^ where is a scalar, called the scalar projection of a onto b, and b̂ is the unit vector in the direction of b. The scalar projection is defined as [2] = ‖ ‖ ⁡ = ^ where the operator ⋅ denotes a dot product, ‖a‖ is the length of ...

  4. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    This matrix equation relates the scalar components of a in the n basis (u,v, and w) with those in the e basis (p, q, and r). Each matrix element c jk is the direction cosine relating n j to e k. [19] The term direction cosine refers to the cosine of the angle between two unit vectors, which is also equal to their dot product. [19] Therefore,

  5. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The curl of a vector field F, denoted by curl F, or , or rot F, is an operator that maps C k functions in R 3 to C k−1 functions in R 3, and in particular, it maps continuously differentiable functions R 3 → R 3 to continuous functions R 3 → R 3. It can be defined in several ways, to be mentioned below:

  6. Unit vector - Wikipedia

    en.wikipedia.org/wiki/Unit_vector

    When θ is a right angle, the versor is a right versor: its scalar part is zero and its vector part v is a unit vector in . Thus the right versors extend the notion of imaginary units found in the complex plane , where the right versors now range over the 2-sphere S 2 ⊂ R 3 ⊂ H {\displaystyle \mathbb {S} ^{2}\subset \mathbb {R} ^{3}\subset ...

  7. Direction cosine - Wikipedia

    en.wikipedia.org/wiki/Direction_cosine

    Here α, β, γ are the direction cosines and the Cartesian coordinates of the unit vector | |, and a, b, c are the direction angles of the vector v. The direction angles a, b, c are acute or obtuse angles, i.e., 0 ≤ a ≤ π, 0 ≤ b ≤ π and 0 ≤ c ≤ π, and they denote the angles formed between v and the unit basis vectors e x, e y, e z.

  8. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    Given a subset S of R n, a vector field is represented by a vector-valued function V: S → R n in standard Cartesian coordinates (x 1, …, x n). If each component of V is continuous, then V is a continuous vector field. It is common to focus on smooth vector fields, meaning that each component is a smooth function (differentiable any number ...

  9. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.