enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    MLPs grew out of an effort to improve single-layer perceptrons, which could only be applied to linearly separable data. A perceptron traditionally used a Heaviside step function as its nonlinear activation function. However, the backpropagation algorithm requires that modern MLPs use continuous activation functions such as sigmoid or ReLU. [8]

  3. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    Nonetheless, the learning algorithm described in the steps below will often work, even for multilayer perceptrons with nonlinear activation functions. When multiple perceptrons are combined in an artificial neural network, each output neuron operates independently of all the others; thus, learning each output can be considered in isolation.

  4. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    The first deep learning multilayer perceptron trained by stochastic gradient descent [28] was published in 1967 by Shun'ichi Amari. [29] In computer experiments conducted by Amari's student Saito, a five layer MLP with two modifiable layers learned internal representations to classify non-linearily separable pattern classes. [10]

  6. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Radial basis functions are functions that have a distance criterion with respect to a center. Radial basis functions have been applied as a replacement for the sigmoidal hidden layer transfer characteristic in multi-layer perceptrons. RBF networks have two layers: In the first, input is mapped onto each RBF in the 'hidden' layer.

  7. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    Binary probabilistic classifiers are also called binary regression models in statistics. In econometrics , probabilistic classification in general is called discrete choice . Some classification models, such as naive Bayes , logistic regression and multilayer perceptrons (when trained under an appropriate loss function ) are naturally ...

  8. What is a master limited partnership (MLP) and how can it ...

    www.aol.com/finance/master-limited-partnership...

    Here’s how a master limited partnership works, examples of MLPs and their pros and cons.

  9. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    We are concerned with feed-forward non-linear networks (multi-layer perceptrons, or MLPs) with multiple outputs. We wish to treat the outputs of the network as probabilities of alternatives ( e.g. pattern classes), conditioned on the inputs.