enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    MLPs grew out of an effort to improve single-layer perceptrons, which could only be applied to linearly separable data. A perceptron traditionally used a Heaviside step function as its nonlinear activation function. However, the backpropagation algorithm requires that modern MLPs use continuous activation functions such as sigmoid or ReLU. [8]

  3. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    Nonetheless, the learning algorithm described in the steps below will often work, even for multilayer perceptrons with nonlinear activation functions. When multiple perceptrons are combined in an artificial neural network, each output neuron operates independently of all the others; thus, learning each output can be considered in isolation.

  4. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Radial basis functions are functions that have a distance criterion with respect to a center. Radial basis functions have been applied as a replacement for the sigmoidal hidden layer transfer characteristic in multi-layer perceptrons. RBF networks have two layers: In the first, input is mapped onto each RBF in the 'hidden' layer.

  5. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...

  6. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    The first deep learning multilayer perceptron trained by stochastic gradient descent [28] was published in 1967 by Shun'ichi Amari. [29] In computer experiments conducted by Amari's student Saito, a five layer MLP with two modifiable layers learned internal representations to classify non-linearily separable pattern classes. [10]

  7. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    The first deep learning multilayer perceptron trained by stochastic gradient descent [22] was published in 1967 by Shun'ichi Amari. [23] In computer experiments conducted by Amari's student Saito, a five layer MLP with two modifiable layers learned internal representations to classify non-linearily separable pattern classes. [24]

  8. Multilayer perceptrons - Wikipedia

    en.wikipedia.org/?title=Multilayer_perceptrons&...

    What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code

  9. Network neuroscience - Wikipedia

    en.wikipedia.org/wiki/Network_neuroscience

    Thorough studies of these systems have been performed in animals, yet this data must be translated to human applications. Applications of tools from network neuroscience and psychometry are used to map and correlate connectivity patterns between the seven circuits.