Search results
Results from the WOW.Com Content Network
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
Zip functions are often available in programming languages, often referred to as zip. In Lisp -dialects one can simply map the desired function over the desired lists, map is variadic in Lisp so it can take an arbitrary number of lists as argument.
In other array types, a slice can be replaced by an array of different size, with subsequent elements being renumbered accordingly – as in Python's list assignment A[5:5] = [10,20,30], that inserts three new elements (10, 20, and 30) before element "A[5]".
Array programming primitives concisely express broad ideas about data manipulation. The level of concision can be dramatic in certain cases: it is not uncommon [example needed] to find array programming language one-liners that require several pages of object-oriented code.
Boo is an object-oriented, statically typed, general-purpose programming language that seeks to make use of the Common Language Infrastructure's support for Unicode, internationalization, and web applications, while using a Python-inspired syntax [2] and a special focus on language and compiler extensibility.
There are three ways in which the elements of an array can be indexed: 0 (zero-based indexing) The first element of the array is indexed by subscript of 0. [8] 1 (one-based indexing) The first element of the array is indexed by subscript of 1. n (n-based indexing) The base index of an array can be freely chosen.
In Lua, "table" is a fundamental type that can be used either as an array (numerical index, fast) or as an associative array. The keys and values can be of any type, except nil. The following focuses on non-numerical indexes. A table literal is written as { value, key = value, [index] = value, ["non id string"] = value }. For example:
The zipper was described by Gérard Huet in 1997. [1] It includes and generalizes the gap buffer technique sometimes used with arrays. The zipper technique is general in the sense that it can be adapted to lists, trees, and other recursively defined data structures. Such modified data structures are usually referred to as "a tree with zipper ...