Search results
Results from the WOW.Com Content Network
Slope stability refers to the condition of inclined soil or rock slopes to withstand or undergo movement; the opposite condition is called slope instability or slope failure. The stability condition of slopes is a subject of study and research in soil mechanics , geotechnical engineering , and engineering geology .
Slope stability analysis is a static or dynamic, analytical or empirical method to evaluate the stability of slopes of soil- and rock-fill dams, embankments, excavated slopes, and natural slopes in soil and rock.
It has also been called Sen's slope estimator, [1] [2] slope selection, [3] [4] the single median method, [5] the Kendall robust line-fit method, [6] and the Kendall–Theil robust line. [7] It is named after Henri Theil and Pranab K. Sen , who published papers on this method in 1950 and 1968 respectively, [ 8 ] and after Maurice Kendall ...
is the angle between the measured slope line and horizontal line; s is the measured slope distance. d is the horizontal distance. The correction is subtracted from to obtain the equivalent horizontal distance on the slope line: =
Vegetation and slope stability are interrelated by the ability of the plant life growing on slopes to both promote and hinder the stability of the slope. The relationship is a complex combination of the type of soil , the rainfall regime , the plant species present, the slope aspect , and the steepness of the slope.
The most favorable conditions for soil nailing are as follows: The soil should be able to stand unsupported one to two meters high for a minimum of two days when cut vertical or nearly vertical. Also, all soil nails within a cross section should be located above the groundwater table. If the soil nails are not located above the groundwater ...
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
It uses a combination of the energy, momentum, and continuity equations to determine water depth with a given a friction slope (), channel slope (), channel geometry, and also a given flow rate. In practice, this technique is widely used through the computer program HEC-RAS , developed by the US Army Corps of Engineers Hydrologic Engineering ...