enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    Widely used in many programs, e.g. it is used in Excel 2003 and later versions for the Excel function RAND [8] and it was the default generator in the language Python up to version 2.2. [9] Rule 30: 1983 S. Wolfram [10] Based on cellular automata. Inversive congruential generator (ICG) 1986 J. Eichenauer and J. Lehn [11] Blum Blum Shub: 1986

  3. Simple random sample - Wikipedia

    en.wikipedia.org/wiki/Simple_random_sample

    Using a simple random sample will always lead to an epsem, but not all epsem samples are SRS. For example, if a teacher has a class arranged in 5 rows of 6 columns and she wants to take a random sample of 5 students she might pick one of the 6 columns at random.

  4. Inverse transform sampling - Wikipedia

    en.wikipedia.org/wiki/Inverse_transform_sampling

    Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.

  5. Box–Muller transform - Wikipedia

    en.wikipedia.org/wiki/Box–Muller_transform

    The Box–Muller transform, by George Edward Pelham Box and Mervin Edgar Muller, [1] is a random number sampling method for generating pairs of independent, standard, normally distributed (zero expectation, unit variance) random numbers, given a source of uniformly distributed random numbers.

  6. Systematic sampling - Wikipedia

    en.wikipedia.org/wiki/Systematic_sampling

    This is random sampling with a system. From the sampling frame, a starting point is chosen at random, and choices thereafter are at regular intervals. For example, suppose you want to sample 8 houses from a street of 120 houses. 120/8=15, so every 15th house is chosen after a random starting point between 1 and 15.

  7. Random number generation - Wikipedia

    en.wikipedia.org/wiki/Random_number_generation

    Dice are an example of a mechanical hardware random number generator. When a cubical die is rolled, a random number from 1 to 6 is obtained. Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols is generated that cannot be reasonably predicted better than by random chance.

  8. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    the (pseudo-random) number generator has certain characteristics (e.g. a long "period" before the sequence repeats) the (pseudo-random) number generator produces values that pass tests for randomness; there are enough samples to ensure accurate results; the proper sampling technique is used; the algorithm used is valid for what is being modeled

  9. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.