enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).

  3. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    However, theoretical understanding of their solutions is incomplete, despite its importance in science and engineering. For the three-dimensional system of equations, and given some initial conditions, mathematicians have not yet proven that smooth solutions always exist. This is called the Navier–Stokes existence and smoothness problem.

  4. SIMPLE algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLE_algorithm

    In computational fluid dynamics (CFD), the SIMPLE algorithm is a widely used numerical procedure to solve the Navier–Stokes equations. SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early ...

  5. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    In order to apply this to the Navier–Stokes equations, three assumptions were made by Stokes: The stress tensor is a linear function of the strain rate tensor or equivalently the velocity gradient. The fluid is isotropic. For a fluid at rest, ∇ ⋅ τ must be zero (so that hydrostatic pressure results).

  6. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_existence...

    Turbulence is a difficult phenomenon to model and understand, and it adds another layer of complexity to the problem of solving the Navier–Stokes equations. To solve the Navier–Stokes equations, we need to find a velocity field (,) and a pressure field (,) that satisfy the equations and the given boundary conditions. This can be done using ...

  7. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    Shown is a sphere in Stokes flow, at very low Reynolds number. Stokes flow (named after George Gabriel Stokes), also named creeping flow or creeping motion, [1] is a type of fluid flow where advective inertial forces are small compared with viscous forces. [2] The Reynolds number is low, i.e. . This is a typical situation in flows where the ...

  8. Discrete exterior calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_exterior_calculus

    In this notation, Stokes' theorem reads as = . In finite element analysis, the first stage is often the approximation of the domain of interest by a triangulation, T. For example, a curve would be approximated as a union of straight line segments; a surface would be approximated by a union of triangles, whose edges are straight line segments ...

  9. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. [ 1 ] [ 2 ] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments , numerical simulations or approximate methods in order to obtain useful information on the flow.