Search results
Results from the WOW.Com Content Network
The Makridakis Competitions (also known as the M Competitions or M-Competitions) are a series of open competitions to evaluate and compare the accuracy of different time series forecasting methods. They are organized by teams led by forecasting researcher Spyros Makridakis and were first held in 1982. [1] [2] [3] [4]
Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.
Forecast either to existing data (static forecast) or "ahead" (dynamic forecast, forward in time) with these ARMA terms. Apply the reverse filter operation (fractional integration to the same level d as in step 1) to the forecasted series, to return the forecast to the original problem units (e.g. turn the ersatz units back into Price).
Free Music Archive: Audio under Creative Commons from 100k songs (343 days, 1TiB) with a hierarchy of 161 genres, metadata, user data, free-form text. Raw audio and audio features. 106,574 Text, MP3 Classification, recommendation 2017 [143] M. Defferrard et al. Bach Choral Harmony Dataset Bach chorale chords. Audio features extracted. 5665 Text
In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and periodic variation, respectively.
The Global Energy Forecasting Competition (GEFCom) is a competition conducted by a team led by Dr. Tao Hong that invites submissions around the world for forecasting energy demand. [1] GEFCom was first held in 2012 on Kaggle , [ 2 ] and the second GEFCom was held in 2014 on CrowdANALYTIX.
ARIMA univariate and multivariate models can be used in forecasting a company's future cash flows, with its equations and calculations based on the past values of certain factors contributing to cash flows. Using time-series analysis, the values of these factors can be analyzed and extrapolated to predict the future cash flows for a company.
Simple or fully formed statistical models to describe the likely outcome of the time series in the immediate future, given knowledge of the most recent outcomes (forecasting). Forecasting on time series is usually done using automated statistical software packages and programming languages, such as Julia, Python, R, SAS, SPSS and many others.