Search results
Results from the WOW.Com Content Network
Consequently, the object is in a state of static mechanical equilibrium. In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. [1]: 39 By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero. [1]: 45–46 [2]
Equilibrant force. In mechanics, an equilibrant force is a force which brings a body into mechanical equilibrium. [1] According to Newton's second law, a body has zero acceleration when the vector sum of all the forces acting upon it is zero:
Hydrostatic equilibrium, the state of a system in which compression due to gravity is balanced by a pressure gradient force; Hyperbolic equilibrium point, a mathematical concept in physics; Mechanical equilibrium, the state in which the sum of the forces, and torque, on each particle of the system is zero
A particle is in equilibrium only if the resultant of all forces acting on the particle is equal to zero. In a rectangular coordinate system the equilibrium equations can be represented by three scalar equations, where the sums of forces in all three directions are equal to zero.
D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.
A static equilibrium between two forces is the most usual way of measuring forces, using simple devices such as weighing scales and spring balances. For example, an object suspended on a vertical spring scale experiences the force of gravity acting on the object balanced by a force applied by the "spring reaction force", which equals the object ...
The forces acting on a body add as vectors, and so the total force on a body depends upon both the magnitudes and the directions of the individual forces. [ 23 ] : 58 When the net force on a body is equal to zero, then by Newton's second law, the body does not accelerate, and it is said to be in mechanical equilibrium .
The resulting force, or "total" force, = +, is then drawn from the start of the first force (the tail) to the end of the second force (the tip). Grasping this concept is fundamental to understanding how forces interact and combine to influence the motion and equilibrium of objects.