enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flamant solution - Wikipedia

    en.wikipedia.org/wiki/Flamant_solution

    Bounded elastic wedge for equilibrium of forces and moments. To get around this problem, we consider a bounded region of the wedge and consider equilibrium of the bounded wedge. [ 3 ] [ 4 ] Let the bounded wedge have two traction free surfaces and a third surface in the form of an arc of a circle with radius a {\displaystyle a\,} .

  3. Exact solutions of classical central-force problems - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_of...

    In the classical central-force problem of classical mechanics, some potential energy functions () produce motions or orbits that can be expressed in terms of well-known functions, such as the trigonometric functions and elliptic functions. This article describes these functions and the corresponding solutions for the orbits.

  4. Classical central-force problem - Wikipedia

    en.wikipedia.org/.../Classical_central-force_problem

    The problem is also important because some more complicated problems in classical physics (such as the two-body problem with forces along the line connecting the two bodies) can be reduced to a central-force problem. Finally, the solution to the central-force problem often makes a good initial approximation of the true motion, as in calculating ...

  5. Statically indeterminate - Wikipedia

    en.wikipedia.org/wiki/Statically_indeterminate

    The structure has no possible states of self-stress, i.e. internal forces in equilibrium with zero external loads are not possible. Statical indeterminacy, however, is the existence of a non-trivial (non-zero) solution to the homogeneous system of equilibrium equations. It indicates the possibility of self-stress (stress in the absence of an ...

  6. D'Alembert's principle - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_principle

    D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.

  7. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    The five equilibrium points of the circular problem are known as the Lagrangian points. See figure below: Restricted three-body problem. In the restricted three-body problem math model figure above (after Moulton), the Lagrangian points L 4 and L 5 are where the Trojan planetoids resided (see Lagrangian point); m 1 is the Sun and m 2 is Jupiter.

  8. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The problem of the simple harmonic oscillator occurs frequently in physics, because a mass at equilibrium under the influence of any conservative force, in the limit of small motions, behaves as a simple harmonic oscillator. A conservative force is one that is associated with a potential energy.

  9. Stress functions - Wikipedia

    en.wikipedia.org/wiki/Stress_functions

    The solution to the elastostatic problem now consists of finding the three stress functions which give a stress tensor which obeys the Beltrami-Michell compatibility equations. Substituting the expressions for the stress into the Beltrami-Michell equations yields the expression of the elastostatic problem in terms of the stress functions: [4]