Search results
Results from the WOW.Com Content Network
Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space. Hilbert spaces were studied beginning in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz.
The Banach–Saks theorem states that every bounded sequence contains a subsequence ... so one obtains the Hilbert space definition of weak convergence. ...
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.
This definition applies to a Banach space, but of course other types of space exist as well; for example, topological vector spaces include Banach spaces, but can be more general. [12] [13] On the other hand, Banach spaces include Hilbert spaces, and it is these spaces that find the greatest application and the richest theoretical results. [14]
In functional analysis, the type and cotype of a Banach space are a classification of Banach spaces through probability theory and a measure, how far a Banach space from a Hilbert space is. The starting point is the Pythagorean identity for orthogonal vectors ( e k ) k = 1 n {\displaystyle (e_{k})_{k=1}^{n}} in Hilbert spaces
Weak convergence (Hilbert space) of a sequence in a Hilbert space more generally, convergence in weak topology in a Banach space or a topological vector space Topics referred to by the same term
This property characterizes Hilbert spaces within the class of Banach spaces: every infinite dimensional, non-Hilbert Banach space contains a closed uncomplemented subspace, a deep theorem of Joram Lindenstrauss and Lior Tzafriri. [9] [3]
Every separable metric space is homeomorphic to a subset of the Hilbert cube. This is established in the proof of the Urysohn metrization theorem. Every separable metric space is isometric to a subset of the (non-separable) Banach space l ∞ of all bounded real sequences with the supremum norm; this is known as the