Ad
related to: gas chromatography and its applications class 9
Search results
Results from the WOW.Com Content Network
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. [ 1 ]
The mass spectrometry process normally requires a very pure sample while gas chromatography using a traditional detector (e.g. Flame ionization detector) cannot differentiate between multiple molecules that happen to take the same amount of time to travel through the column (i.e. have the same retention time), which results in two or more ...
Most often, the other technique is some form of chromatography. Hyphenated techniques are widely used in chemistry and biochemistry. A slash is sometimes used instead of hyphen, especially if the name of one of the methods contains a hyphen itself. Examples of hyphenated techniques: Gas chromatography-mass spectrometry (GC-MS)
Pyrolysis–gas chromatography–mass spectrometry is a method of chemical analysis in which the sample is heated to decomposition to produce smaller molecules that are separated by gas chromatography and detected using mass spectrometry. Pyrolysis is the thermal decomposition of materials in an inert atmosphere or a vacuum.
Similar to the process of distillation, gas-liquid chromatography (typically referred to as gas chromatography, or, more simply, GC) utilises a distillation tower to separate the petroleum. However, compared to distillation's 2 to 300 theoretical plates, gas chromatography includes more than 25,000. This provides a greater degree of separation ...
Unresolved complex mixture (UCM), or hump, is a feature frequently observed in gas chromatographic (GC) data of crude oils and extracts from organisms exposed to oil. [ 1 ] The reason for the UCM hump appearance is that GC cannot resolve and identify a significant part of the hydrocarbons in crude oils.
These fragments can be separated by gas chromatography. Pyrolysis GC chromatograms are typically complex because a wide range of different decomposition products is formed. The data can either be used as fingerprint to prove material identity or the GC/MS data is used to identify individual fragments to obtain structural information.
Gas chromatography-mass spectrometry (GC-MS) is a two-dimensional chromatography technique that combines the separation technique of gas chromatography with the identification technique of mass spectrometry. GC-MS is the single most important analytical tool for the analysis of volatile and semi-volatile organic compounds in complex mixtures. [7]
Ad
related to: gas chromatography and its applications class 9