Search results
Results from the WOW.Com Content Network
In telecommunications, data transfer rate is the average number of bits , characters or symbols , or data blocks per unit time passing through a communication link in a data-transmission system. Common data rate units are multiples of bits per second (bit/s) and bytes per second (B/s).
People are often concerned about measuring the maximum data throughput in bits per second of a communications link or network access. A typical method of performing a measurement is to transfer a 'large' file from one system to another system and measure the time required to complete the transfer or copy of the file.
The propagation delay of a physical link can be calculated by dividing the distance (the length of the medium) in meter by its propagation speed in m/s. Propagation time = Distance / propagation speed. Example: Ethernet communication over a UTP copper cable with maximum distance of 100 meter between computer and switching node results in:
The physical layer net bitrate, [12] information rate, [6] useful bit rate, [13] payload rate, [14] net data transfer rate, [9] coded transmission rate, [7] effective data rate [7] or wire speed (informal language) of a digital communication channel is the capacity excluding the physical layer protocol overhead, for example time division ...
Data signaling rate or gross bit rate, a bit rate that includes protocol overhead; Symbol rate or baud rate, the number of symbol changes, waveform changes, or signaling events across the transmission medium per unit of time; Data-rate units, measures of the bit rate or baud rate of a link
In order to calculate the data transmission rate, one must multiply the transfer rate by the information channel width. For example, a data bus eight-bytes wide (64 bits) by definition transfers eight bytes in each transfer operation; at a transfer rate of 1 GT/s, the data rate would be 8 × 10 9 B/s, i.e. 8 GB/s, or approximately 7.45 GiB/s
Speed: 2.4 kbit/s to 1 Gbit/s; Modulation: baseband, no carrier; Infrared window (part of the device body transparent to infrared light beam) Wavelength: 850–900 nm; The frame size depends on the data rate mostly and varies between 64 B and 64 kB. Additionally, bigger blocks of data can be transferred by sending multiple frames consecutively.
The latter will increase the data transfer rate for a given RPM speed. Improvement of data transfer rate performance is correlated to the areal density only by increasing a track's linear surface bit density (sectors per track). Simply increasing the number of tracks on a disk can affect seek times but not gross transfer rates.