Search results
Results from the WOW.Com Content Network
For loop illustration, from i=0 to i=2, resulting in data1=200. A for-loop statement is available in most imperative programming languages. Even ignoring minor differences in syntax, there are many differences in how these statements work and the level of expressiveness they support.
The expression which denotes the collection to loop over is evaluated in list-context, but not flattened by default, and each item of the resulting list is, in turn, aliased to the loop variable(s). List literal example:
a declarator_list is a comma-separated list of declarators, which can be of the form identifier As object_creation_expression (object initializer declarator) , modified_identifier «As non_array_type « array_rank_specifier »»« = initial_value» (single declarator) , or
Comparison of programming languages; General comparison; Assignment; Basic syntax; Basic instructions; Comments; Control flow Foreach loops; While loops; For loops
The paper "Revisiting Coroutines" [5] published in 2009 proposed term full coroutine to denote one that supports first-class coroutine and is stackful. Full Coroutines deserve their own name in that they have the same expressive power as one-shot continuations and delimited continuations. Full coroutines are either symmetric or asymmetric.
Class-based object-oriented programming languages support objects defined by their class. Class definitions include member data. Message passing is a key concept, if not the main concept, in object-oriented languages. Polymorphic functions parameterized by the class of some of their arguments are typically called methods.
for X := 0.1 step 0.1 to 1.0 do might be repeated 9 or 10 times, depending on rounding errors and/or the hardware and/or the compiler version. Furthermore, if the increment of X occurs by repeated addition, accumulated rounding errors may mean that the value of X in each iteration can differ quite significantly from the expected sequence 0.1, 0 ...
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.