Search results
Results from the WOW.Com Content Network
All play crucial roles in responding to rising or falling levels of blood glucose. The predominant cells of the liver are the hepatocytes, and GK is found exclusively in these cells. During digestion of a carbohydrate meal, when blood glucose is plentiful and insulin levels are high, hepatocytes remove glucose from the blood and store it as ...
If the blood glucose level falls to dangerously low levels (as during very heavy exercise or lack of food for extended periods), the alpha cells of the pancreas release glucagon, a peptide hormone which travels through the blood to the liver, where it binds to glucagon receptors on the surface of liver cells and stimulates them to break down glycogen stored inside the cells into glucose (this ...
The glucokinase regulatory protein (GKRP) also known as glucokinase (hexokinase 4) regulator (GCKR) is a protein produced in hepatocytes (liver cells). GKRP binds and moves glucokinase (GK), thereby controlling both activity and intracellular location [1] [2] of this key enzyme of glucose metabolism.
Glucagon is delivered directly to the liver, where it connects to the glucagon receptors on the membranes of the liver cells, signals the conversion of the glycogen already stored in the liver cells into glucose. This process is called glycogenolysis. Conversely, when the blood glucose levels are too high, the pancreas is signaled to release ...
Low insulin levels and/or insulin resistance prevent the body from converting glucose into glycogen (a starch-like source of energy stored mostly in the liver), which in turn makes it difficult or impossible to remove excess glucose from the blood. With normal glucose levels, the total amount of glucose in the blood at any given moment is only ...
The glucose cycle is required for one of the liver functions; the homeostasis of glucose in the blood stream. When the blood glucose level is too high, glucose can be stored in the liver as glycogen. When the level is too low, the glycogen can be catabolised and glucose may re-enter the blood stream.
Glucose-6-phosphate can then progress through glycolysis. [1] Glycolysis only requires the input of one molecule of ATP when the glucose originates in glycogen. [1] Alternatively, glucose-6-phosphate can be converted back into glucose in the liver and the kidneys, allowing it to raise blood glucose levels if necessary. [2]
Glycogenesis is the process of glycogen synthesis or the process of converting glucose into glycogen in which glucose molecules are added to chains of glycogen for storage. This process is activated during rest periods following the Cori cycle, in the liver, and also activated by insulin in response to high glucose levels. [1]