Search results
Results from the WOW.Com Content Network
Predictive modelling uses statistics to predict outcomes. [1] Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. For example, predictive models are often used to detect crimes and identify suspects, after the crime has taken place. [2]
Uplift modelling uses a randomised scientific control not only to measure the effectiveness of an action but also to build a predictive model that predicts the incremental response to the action. The response could be a binary variable (for example, a website visit) [1] or a continuous variable (for example, customer revenue). [2]
Predictive modeling is a statistical technique used to predict future behavior. It utilizes predictive models to analyze a relationship between a specific unit in a given sample and one or more features of the unit. The objective of these models is to assess the possibility that a unit in another sample will display the same pattern.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]
It is used to build predictive models and conduct other analytic tasks. It has a visual interface which allows users to leverage statistical and data mining algorithms without programming. One of its main aims from the outset was to eliminate needless complexity in data transformations, and make complex predictive models very easy to use.
Predictive learning is a machine learning (ML) technique where an artificial intelligence model is fed new data to develop an understanding of its environment, capabilities, and limitations. This technique finds application in many areas, including neuroscience , business , robotics , and computer vision .
The Predictive Model Markup Language (PMML) is an XML-based predictive model interchange format conceived by Robert Lee Grossman, then the director of the National Center for Data Mining at the University of Illinois at Chicago.