Search results
Results from the WOW.Com Content Network
The main control surfaces of a fixed-wing aircraft are attached to the airframe on hinges or tracks so they may move and thus deflect the air stream passing over them. This redirection of the air stream generates an unbalanced force to rotate the plane about the associated axis. Flight control surfaces of Boeing 727
Cockpit controls and instrument panel of a Cessna 182D Skylane. Generally, the primary cockpit flight controls are arranged as follows: [2] A control yoke (also known as a control column), centre stick or side-stick (the latter two also colloquially known as a control or joystick), governs the aircraft's roll and pitch by moving the ailerons (or activating wing warping on some very early ...
A control system includes control surfaces which, when deflected, generate a moment (or couple from ailerons) about the cg which rotates the aircraft in pitch, roll, and yaw. For example, a pitching moment comes from a force applied at a distance forward or aft of the cg, causing the aircraft to pitch up or down.
Elevators' effect on pitch Elevator and pitch trim tab of a light aircraft. Elevators are flight control surfaces, usually at the rear of an aircraft, which control the aircraft's pitch, and therefore the angle of attack and the lift of the wing. The elevators are usually hinged to the tailplane or horizontal stabilizer.
An aircraft stabilizer is an aerodynamic surface, typically including one or more movable control surfaces, [1] [2] that provides longitudinal (pitch) and/or directional (yaw) stability and control. A stabilizer can feature a fixed or adjustable structure on which any movable control surfaces are hinged, or it can itself be a fully movable ...
Flight control surfaces, the movable surfaces that control the flight of an airplane; Aircraft flight control system, flight control surfaces, the respective cockpit controls, and the systems linking the two; Helicopter flight controls, similar systems for a helicopter; Triangle control frame, the A-frame-like handle used to control hang gliders
A hydraulic system is required for high speed flight and large aircraft to convert the crews' control system movements to surface movements. The hydraulic system is also used to extend and retract landing gear, operate flaps and slats, operate the wheel brakes and steering systems.
In aeronautics, air brakes or speed brakes are a type of flight control surface used on an aircraft to increase the drag on the aircraft. [1] When extended into the airstream, air brakes cause an increase in the drag on the aircraft. When not in use, they conform to the local streamlined profile of the aircraft in order to help minimize drag. [2]