Search results
Results from the WOW.Com Content Network
C is the sodium channel . ... The voltage sensitivity of this channel is due to positive amino acids located at ... Changes in blood and tissue pH accompany ...
The epithelial sodium channel (ENaC), (also known as amiloride-sensitive sodium channel) is a membrane-bound ion channel that is selectively permeable to sodium ions (Na +).It is assembled as a heterotrimer composed of three homologous subunits α or δ, β, and γ, [2] These subunits are encoded by four genes: SCNN1A, SCNN1B, SCNN1G, and SCNN1D.
The sodium–potassium pump, a critical enzyme for regulating sodium and potassium levels in cells. Sodium ions (Na +) are necessary in small amounts for some types of plants, [1] but sodium as a nutrient is more generally needed in larger amounts [1] by animals, due to their use of it for generation of nerve impulses and for maintenance of electrolyte balance and fluid balance.
The flow of sodium ions across epithelia affects osmolarity of the extracellular fluid. Thus, ENaC plays a central role in the regulation of body fluid and electrolyte homeostasis and consequently affects blood pressure. [5] As ENaC is strongly inhibited by amiloride, it is also referred to as an "amiloride-sensitive sodium channel".
The principal cell mediates the collecting duct's influence on sodium and potassium balance via sodium channels and potassium channels located on the cell's apical membrane. Aldosterone determines expression of sodium channels (especially the ENaC on the collecting tubule). Increases in aldosterone increase expression of luminal sodium channels ...
Persistent sodium current generation is hypothesized to occur by the incomplete inactivation of the voltage-gated sodium channel current (INa), where the channel becomes constitutively active and conducts sodium, creating a "persistently active" inward sodium current. Upon depolarization, the four identical motifs of the sodium channel (which ...
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Voltage-gated sodium channels (VGSCs), also known as voltage-dependent sodium channels (VDSCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the sodium ion Na +. They are the main channels involved in action potential of excitable cells.