Search results
Results from the WOW.Com Content Network
For rod length 6" and crank radius 2" (as shown in the example graph below), numerically solving the acceleration zero-crossings finds the velocity maxima/minima to be at crank angles of ±73.17530°. Then, using the triangle law of sines, it is found that the rod-vertical angle is 18.60639° and the crank-rod angle is 88.21832°. Clearly, in ...
These equations express the link lengths, L 1, L 2, and L 3, as a function of the stroke,(ΔR 4) max, the imbalance angle, β, and the angle of an arbitrary line M, θ M. Arbitrary line M is a designer-unique line that runs through the crank pivot point and the extreme retracted slider position.
The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system. [ 1 ] They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general basis in three dimensional linear algebra .
θ is the angle at which the projectile is launched; y 0 is the initial height of the projectile; If y 0 is taken to be zero, meaning that the object is being launched on flat ground, the range of the projectile will simplify to: =
In engineering, for instance, kinematic analysis may be used to find the range of movement for a given mechanism and, working in reverse, using kinematic synthesis to design a mechanism for a desired range of motion. [8] In addition, kinematics applies algebraic geometry to the study of the mechanical advantage of a mechanical system or mechanism.
The various Euler angles relating the three reference frames are important to flight dynamics. Many Euler angle conventions exist, but all of the rotation sequences presented below use the z-y'-x" convention. This convention corresponds to a type of Tait-Bryan angles, which are commonly referred to as Euler angles. This convention is described ...
Vacuum trajectory of a projectile for different launch angles. Launch speed is the same for all angles, 50 m/s, and "g" is 10 m/s 2. To hit a target at range x and altitude y when fired from (0,0) and with initial speed v, the required angle(s) of launch θ are:
The kinematics equations of the figure define the relationship between the joint angles of the figure and its pose or configuration. The forward kinematic animation problem uses the kinematics equations to determine the pose given the joint angles. The inverse kinematics problem computes the joint angles for a desired pose of the figure.