Search results
Results from the WOW.Com Content Network
Media related to Ampere's law at Wikimedia Commons; MISN-0-138 Ampere's Law by Kirby Morgan for Project PHYSNET. MISN-0-145 The Ampere–Maxwell Equation; Displacement Current (PDF file) by J. S. Kovacs for Project PHYSNET. A Dynamical Theory of the Electromagnetic Field Maxwell's paper of 1864
ampere The SI unit of electrical current. Ampère's circuital law The mathematical relation between the integral of the magnetic field over some closed curve to the current passing through the region bound by the curve. Ampère's force law The mathematical relation between the force between two current carrying conductors and the current ...
In magnetostatics, the force of attraction or repulsion between two current-carrying wires (see first figure below) is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field , following the Biot–Savart law , and the other wire experiences a magnetic force as a consequence, following ...
In electromagnetism, displacement current density is the quantity ∂D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is.
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
where is the current, measured in amperes; is the potential difference, measured in volts; and is the resistance, measured in ohms. For alternating currents , especially at higher frequencies, skin effect causes the current to spread unevenly across the conductor cross-section, with higher density near the surface, thus increasing the apparent ...
The two Maxwell equations, Faraday's Law and the Ampère–Maxwell Law, illustrate a very practical feature of the electromagnetic field. Faraday's Law may be stated roughly as "a changing magnetic field inside a loop creates an electric voltage around the loop". This is the principle behind the electric generator.
Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...