enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  3. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  4. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The stress due to shear force is maximum along the neutral axis of the beam (when the width of the beam, t, is constant along the cross section of the beam; otherwise an integral involving the first moment and the beam's width needs to be evaluated for the particular cross section), and the maximum tensile stress is at either the top or bottom ...

  5. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    is the average shear stress, is the shear force applied to each section of the part, and is the area of the section. [1] Average shear stress can also be defined as the total force of as = This is only the average stress, actual stress distribution is not uniform.

  6. Stress resultants - Wikipedia

    en.wikipedia.org/wiki/Stress_resultants

    Stress resultants are simplified representations of the stress state in structural elements such as beams, plates, or shells. [1] The geometry of typical structural elements allows the internal stress state to be simplified because of the existence of a "thickness'" direction in which the size of the element is much smaller than in other directions.

  7. Roark's Formulas for Stress and Strain - Wikipedia

    en.wikipedia.org/wiki/Roark's_Formulas_for_Stress...

    Chapter 2 – Stress and Strain: Important Relationships Chapter 3 – The Behavior of Bodies Under Stress Chapter 4 – Principles and Analytical Methods Chapter 5 – Numerical Methods Chapter 6 – Experimental Methods Chapter 7 – Tension, Compression, Shear, and Combined Stress Chapter 8 – Beams; Flexure of Straight Bars

  8. Direct integration of a beam - Wikipedia

    en.wikipedia.org/wiki/Direct_integration_of_a_beam

    Simply supported beam with a constant 10 kN per meter load over a 15m length. Take the beam shown at right supported by a fixed pin at the left and a roller at the right. There are no applied moments, the weight is a constant 10 kN, and - due to symmetry - each support applies a 75 kN vertical force to the beam. Taking x as the distance from ...

  9. Neutral axis - Wikipedia

    en.wikipedia.org/wiki/Neutral_axis

    Where is the shear strain and is the shear stress There is a compressive (negative) strain at the top of the beam, and a tensile (positive) strain at the bottom of the beam. Therefore by the Intermediate Value Theorem , there must be some point in between the top and the bottom that has no strain, since the strain in a beam is a continuous ...