Ads
related to: easy equations to solve for 3
Search results
Results from the WOW.Com Content Network
In the simple case of a function of one variable, say, h(x), we can solve an equation of the form h(x) = c for some constant c by considering what is known as the inverse function of h. Given a function h : A → B , the inverse function, denoted h −1 and defined as h −1 : B → A , is a function such that
The solution set for the equations = and + = is the single point (2, 3). An example of solving a system of linear equations is by using the elimination method: {+ = = Multiplying the terms in the second equation by 2:
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
The same principles also apply to systems of equations with more variables, with the difference being that the equations do not describe lines but higher dimensional figures. For instance, equations with three variables correspond to planes in three-dimensional space, and the points where all planes intersect solve the system of equations. [52]
The simplest method for solving a system of linear equations is to repeatedly eliminate variables. This method can be described as follows: In the first equation, solve for one of the variables in terms of the others. Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown.
3 Lists of equations. 4 See also. ... Equation solving; Theory of equations This page was last edited on 8 August 2024, at 09:21 (UTC). Text is available under the ...
Lagrange's method can be applied directly to the general cubic equation ax 3 + bx 2 + cx + d = 0, but the computation is simpler with the depressed cubic equation, t 3 + pt + q = 0. Lagrange's main idea was to work with the discrete Fourier transform of the roots instead of with the roots themselves.
The equations of the circle and the other conic sections—ellipses, parabolas, and hyperbolas—are quadratic equations in two variables. Given the cosine or sine of an angle, finding the cosine or sine of the angle that is half as large involves solving a quadratic equation.
Ads
related to: easy equations to solve for 3